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It is shown that if quantum measurement results in a phase transition in a detector 
medium, then due to orthogonality of Fock spaces of different vacuums the 
final state cannot be distinguished from the mixture. Examples for transitions in 
ferromagnetic and vapor-liquid systems are considered. A new formalism is 
proposed in which EPR-Bohm nonlocal correlations are described as spontaneous 
symmetry breaking of the pair system state. 

The analogy between quantum measurement and the spontaneous sym- 
metry breaking (SSB) mechanism of nonperturbative quantum field theory 
(NQFT) was pointed out first by Neeman (1986). Besides gauge field theories, 
the phenomenon of SSB is well known for macroscopic phase transitions. 
Some of these are applied for the detection of elementary particles, for 
example, l iquid-vapor transitions in Wilson and bubble chambers. In standard 
quantum mechanics (QM) particle interaction with a detector medium during 
the measurement of  an observable I should result in the entanglement of  the 
quantum states of  particle g and detector S 

Igo)[So) ~ .~, Cill)lSi) (1) 

So in principle interference between different states Ili), Is j) can be observed, 
which is impossible for mixed states as predicted by the QM reduction 
postulate (RP). 

First we regard qualitatively the measurement of the coordinates of a 
relativistic particle g in a Wilson chamber filled with saturated vapor. We 
take Ig) as a superposition of two flight paths Ix1) inside and Ix2) outside 
the chamber. If  g passes through the vapor, it can transfer high momentum 
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to one of the atomic electrons, which will leave the chamber practically 
without secondary interactions. At the interaction point a positive ion will 
be left at rest which will attract electrostatically surrounding atoms due to 
their multipole moments. If the vapor pressure is higher than the saturation 
pressure, this will result in the formation of a liquid drop which can grow 
in size unrestrictedly, corresponding to a phase transition of the first kind 
(Landau and Lifshitz, 1958). It is impossible now to solve the evolution 
equations for such a state. Only final system parameters can be obtained 
from the study of the minimum of the thermodynamic potential for a two- 
phase system. The formation of the new phase is checked by the approximation 
of the drop surface free energy to its normal macroscopic value. It occurs 
when the drop radius is R > >  10 -6 cm, which corresponds to 10 4-6 atoms 
in it. Interference effects are expected tobe proportional to nondiagonal terms 
of the operator M = /~/A"/~S where M a and Ms are particle and detector 
observable measurements, respectively. So we must consider terms of M 
= Tr(pfM) of the type (xIIMAIx2)" (L, IMslVj). But due to the orthogonality 
of Fock spaces of different phases, Ms matrix elements should be zeros. 
This occurs for any linear operator Ms which could be written as a sum 
of finite products of annihilation-creation operators of one-phase excitations 
ai, a[  (quasiparticles) and so cannot connect states from different phases. 
For the vapor the Fock ground state is the normal vacuum and for the 
liquid the new vacuum is its ground state and quasiparticles are phonons. 
So if all practically measurable operators are of Ms type, this interference 
is unobservable. 

Now we regard phase transitions of the second kind, where some approxi- 
mate calculations are possible for ferromagnetic media. We consider the 
measurement of the charged particles coherent state I A) = ~xllx) + c~2 Ixa) of 
two parallel paths IXl,2) passing along opposite sides of a small ferromagnetic 
sample FS whose initial magnetization is negligible. This can be approxi- 
mately fulfilled: (a) if the sample is in the paramagnetic state at T > T~(P), 
and instantaneously by the change of pressure it transfers into the ferromag- 
netic phase, whose magnetization is defined by the external field; (b) for soft 
magnetic materials for T < <  T~, when many domain fields equalize each 
other. The Hamiltonian of FS in the external (particle's) field H is 

I2IF = - E  bijSiSj - M E HSj (2) 

where b,-j is the atomic exchange integral. The change of spin systems S 2 
and Sz is allowed due to interaction with the crystal lattice orbital momentum, 
which is omitted in (2). We take the particle's weak magnetic field to be 
nearly constant in the FS volume and directed along the z axis. For the path 
superposition the field is the operator 

q[P" Ri] 
/ ~ = H + +  H_ = ~ (3) 

r 3 
I = 1 , 2  . =  , 
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where q is the charge, p is the momentum operator of the particle, and r l ,  2 

are the radius vectors from the two particle paths to the FS center. Also it 
is supposed that the time of flight when I t  acts on FS is "rF > >  "rr, the phase 
transition time, which for the ferromagnetic phase is of the order 10 -3 sec. 
Under these conditions it can be shown that for both examples (a) and (b) 
the minimum of the Hamiltonian HF density achieved in the entangled state is 

1 
IXIf/) = ~ (OI.IlXI)[UF) q- O~21X2) IDF) ) (4) 

which survives even after H is turned off. I Ur) = l ul)" l u2) . . .  is the FS 
spin state polarized along the z axis and [Dr) is that in the opposite direction. 
I UF) and I DF) are two different vacuum states of the ferromagnetic whose 
excitations (magnons) are also orthogonal, which we denote as I k,), I ka). In 
the NQFT framework, as no selection rules prohibit it, with FS initially in 
an unspecified pure or mixed state, the system asymptotically will evolve to 
the single pure state (4) in which the Hamiltonian (2) reaches its minimum 
(Itzykson and Zuber, 1979). As in the previous example, any nondiagonal 
terms are infinitely small for the polynomial of ak, a~-, and S + A interference 
is unobservable in this case. For example, this is true for the magnetization 
I which defines the FS induction, because I II = N - 2~ aka~-. This result is 
expected to be true approximately in the temperature range T < 0.3To where 
the relative weight of thermal magnon excitations in the density matrix is of 
the order 10 -2 relative to the vacuum state weight (Landau and Lifshitz, 
1958). Thermal excitations must gain decoherence additionally, which is not 
accounted for here. 

Preliminary NQFT path integral calculations of Ward-Takahasi identi- 
ties for spin field �9 with spin operators S i and the SU(2)-invariant Lagrangian 
L(q ~) = L(ei~ic~ixI r) for i = 1, 2, 3 support those results. A small noninvariant 
perturbation $3/) from the external fields of (3) is to be added to L(~). The 
resulting generating functional W[J], where J(x) is an arbitrary function, is 
invariant under SU(2) rotations OW/OoLi = 0 (Itzykson and Zuber, 1979). The 
subsequent functional derivatives gW/gJ result in the equation (S3(x)) = 
f d*y ([-ISi(y)Si(x)) for i = 1, 2, where the expectation is taken on both spin 
vacuum and IA) variables, and whose solution coincides with (4). It was 
shown that the same breakdown can be induced also for restricted field 
volume or finite N, changing only the magnon effective mass and minimal 
field limit required for the SSB initiation (Celeghini et al., 1990). 

The final state (4) is the same as for the Koleman-Hepp (KH) model 
for an ensemble Es of N < ~ polarized free spins (Hepp, 1972). It was shown 
that in this case for the observable 0 = HN (crxi) the nondiagonal matrix 
element AQ is large (Bell, 1975), 
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AQ = <UFIOIDF> I<.,t  ,tUi>l N 

To measure Q, each particle of Es should be sent through a Stern-Gerlach 
magnet where each Sx is measured separately. For FS states no measurement 
on the FS as a whole body can help to define the Q value, because all FS 
observables are polynomials of ak, as of rate n less than 4 (Ziman, 1964). 
Note that OF is only the electron exchange part of the full lattice Hamiltonian 
/tern. To measure 0 by use of a Stern-Gerlach magnet we must first to break 
the FS lattice into atoms, not disturbing the spin collective state, which is 
obviously impossible. Even if a single atom is removed from the lattice by 
projectile scattering or some external field, this will result in magnon excita- 
tions of the lattice and distort the Fock space basis. Even if this can be 
performed coherently when only N < 105-6 atoms are left in the lattice, it 
becomes paramagnetic due to additional electron momentum acquired in a 
small volume due to the uncertainty relation (Strikman and Treves, 1963). 
So further spin measurement loses any sense. 

This measurability restriction for individual particles seems quite natural 
for the secondarily quantized states originating from the collective interac- 
tions. It seems that all the observables which can be really measured for FS, 
for example, the magnetization I = ~N O.i, behave as classic stochastic values. 
This means that our set of FS observables is described by a C*-algebra, 
which introduces restrictions of measurability analogous to classic meter- 
pointer observables (Hepp, 1972). This change in comparison with the KH 
model in the N-finite case is explained by the presence of the electromagnetic 
field with infinite number of degrees of freedom. Its infrared divergencies 
supposedly define the SSB mechanism in ferromagnetics (Celeghini et al., 
1990). 

Now we study possible connections of state vector symmetry breaking 
with space-time symmetries as in the gauge field theories. Above, the value 
of the SSB parameter--for  example, the direction of magnetization--was 
purely stochastic. In the quantum mechanical formalism if two particles have 
interacted previously, then some of their measured observables are correlated. 
These nonlocal correlations are defined by the QM reduction postulate (RP). 

For the EPR-Bohm singlet two-fermion system the final state after Sz 
measurements on both particles is 

1 �9 f= --~(Is'.)lU)lld)21s~,)- Is~)ld),lu)2[s~.)) (5) 

where S, ~ . . . .  are the states of detectors D~, D2 for u, d states of particles. 
For continuous observables, arbitrary hydrogenlike potential systems 

M = A~ + A2 which can be free or bound to some point are studied. Their 
wave function can be written in general 
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IM) = t~(rt, r2) = x(R)qb(rl2) (6) 

where RI, r2 are coordinate vectors of particles AI, A2; r~z = r~ - r2; 
and R = (rnlrl + m2r2)/(ml + m2) is the system center-of-mass coordinate. 
For a free M system, x(R) = c exp( ipR) ,  where p is the total momentum 
of M, and M is uniformly distributed inside the large volume H 3 with 
dimensions --H.  We also assume M has a finite size, characterized by 
RM = 0.51rl -- r21 and q~(r) ~ 0 at r > >  Ra4. 

R and r12 are M generalized coordinates (GC) and in terms of them IM) 
is factorized into the wave function • of  the system M as a whole and d~ 
describing the relation between its parts. If  idealized detectors, without dis- 
turbing another particle, measure instantaneously at rl and re, their correlations 
must be measured. In principle such rl, r2 correlations can be detected if M 
is unstable and decays in flight at the moment  t and A~, A2 have very low 
velocities. At t~ = t + dt we insert in H 3 detectors D~, D 2 and measure rl, 
r2. The wave packet smearing is small for small dt, so we find E rl - 1"21 < < 
H and R = 0.5(rl - rz). This correlation can be regarded as induced by R 
reduction to the same value in both rl and r2 measurements, when qb(rl2 ) = 
~(r12 ) relative to the H scale. It is supposed that nonlocal correlations can 
be connected with the fictitious state vector dependence on one GC which 
is reduced to the same unique value in both measurements. 

For the EPR-Bohm singlet pair its spin state vector can be rewritten 
through the GC T z = Sz~ - S~, J.  = Sz~ + S:2; we have 

]g12 ) = 1 / x f 2 ( l r  z = 1) - IT,. = - 1))g(Jz) (7) 

In fact this is a function of one variable describing system Vl2 electron spin 
orientation in space for J: = 0, j 2  _..= 0,  which are also GC. Obviously this 
approach agrees with the Bell theorem, because it conserves amplitudes 
structure, despite the transformation of observables. For example, for a spin 
1/2 pair, if the angle between z~ and z2 is e~, calculation for the amplitudes 
of Tz, Jz gives the expectation value for projection on Zl, Z2 to be E(zb  zz) 
= - c o s  t~ (Bell, 1975). 

This formalism leads to a new GC interpretation of quantum nonlocality 
derived from the supposed hierarchy of system observables. We regard on 
an equal basis the macroscopic world W and any free quantum systems Mz 
constituting the set of  independent quantum systems Sq. We suppose that in 
nature there are really fundamental quantum observables which describe 
relations between such Sq or Sq internal coordinates. Such observables are to 
be unambiguous despite their initial uncertainty and consequently are reduced 
to the same value being measured at separate space points. Individual particle 
observables are derivatives of such primary system GC which result in their 
distant correlations. For system M if r~ or r2 is measured, the reduction of 
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R occurs and due to it rj, r2 correlations are observed. The same approach 
is applicable for spin space, where the EPR-Bohm singlet state can be regarded 
as independent of the external world W and ~ describes their relative orienta- 
tion. In classical physics any choice of system GC is equivalent, but in 
quantum mechanics the preferable GC is revealed by the reduction of the 
correlated states. 

It is well known that the standard RP in which state vector reduction 
is to occur instantaneously in all space formally is not covariant. The covariant 
RP can be formulated only for observer-dependent (OD) wave functions 
~o( t ,  Xo, xl,  d~, x2, d2 . . . .  ), where Xo and t are observer position and time 
axis, and xt, dt are particle coordinates and other observables (Finkelstain, 
1992). After the measurement at xl, t the reduced wave function ~ will 
exist for Xo inside the xl, tl future light cone and initial ~ o  will exist outside 
of it. The proposed ODRP is covariant, as the light cone transforms into 
itself and satisfies quantum field causality. 

Now we consider RP for a correlated state which can be described by 
the GC set DI. For this purpose we take the former OD function for which 
dj = F(DI) and transform it into OD ~o( t ,  Xo, DI). In case of correlated 
measurements at xl, x2 the ODRP yields that the reduced function ~'o(Di)  
will exist inside two light cones starting at xt, t and x2, t and ~o(D/ )  stays 
outside of it. It is supposed that spacelike-separated measurements at xl and 
x2 can be regarded as independent of each other in the sense that the measure- 
ment at xt does not influence the result of the measurement at x2 and vice 
versa. This independence supposedly is a consequence of the symmetry of 
the measurements at xl and x2 under Lorentz transformations, in which one 
event can become the past or the future relative to another. It fits into the 
GC nonlocality interpretation, which derives correlations from the reduction 
of fundamental observables describing relations of independent quantum 
systems to a unique value at the different space points. 

These results suppose that the correlation between the two measuring 
devices which measure parameters of the EPR pair can be interpreted also 
as the global (nonlocal) SSB of the system state which is broken by these 
measurements. This reflects the fact that the same observable T z = Szi - 
Sz2 can be taken as the SSB parameter for the two devices in formula (5). 
So in this case two space-separated phase transitions in these devices will 
evolve in correlation defined by this parameter. 
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